LESSON 4.1a

Evaluating Polynomial Functions

Today you will:

- Identify polynomial functions
- Practice using English to describe math processes and equations

Core Vocabulary:

- polynomial, p. 158
- polynomial function, p. 158
- end behavior, p. 159

Previous:

- monomial
- linear function
- quadratic function

What is a MONOMIAL?

- ...mono means ... "one"
- a number, a variable, or the product of a number and one or more variables with whole number exponents
- examples: 3, 3^2 , x^2 , $2x^3$
- the key is they can only have whole number exponents
- counter examples (not monomials): 3^{-2} , x^{x} , \sqrt{x} ... each has an exponent that is not a whole number

What is a POLYNOMIAL?

- ...poly means ... "many" ... one or more
- a monomial or a sum of monomials.

What is a POLYNOMIAL FUNCTION?

- a function of the form $f(x) = a_n x^n + a_{n-1}x^{n-1} + ... + a_1 x + a_0$
- examples: $f(x) = -2x^4 + 5x^3 3x^2 + x 7$

$$g(x) = 3x^5 + 2x^2 - 4$$
$$h(x) = 2x + 1$$

Anatomy of a polynomial function

- $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ (general form)
- $f(x) = -3x^5 + 2x^4 5x^3 x^2 + 4x 7$ (example)
- Standard form:
 - Arranged with exponents in descending order from left to right
- Leading term:
 - The term with the highest exponent ... example above, the leading term is $-3x^5$
- Leading coefficient:
 - The coefficient of the leading term ... above, the leading coefficient is -3
- Degree of the polynomial
 - The value of the highest exponent
 - $f(x) = -2x^4 + 5x^3 3x^2 + x 7$... degree 4
 - $g(x) = 3x^5 + 2x^2 4$... degree 5
 - $h(x) = 2x + 1 \dots$ degree 1
 - k(x) = 6 ... degree 0 (because it is actually $k(x) = 6x^0$)

Common Polynomial Functions				
Degree	Туре	Standard Form	Example	
0	Constant	$f(x) = a_0$	f(x) = -14	
1	Linear	$f(x) = a_1 x + a_0$	f(x) = 5x - 7	
2	Quadratic	$f(x) = a_2 x^2 + a_1 x + a_0$	$f(x) = 2x^2 + x - 9$	
3	Cubic	$f(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$	$f(x) = x^3 - x^2 + 3x$	
4	Quartic	$f(x) = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$	$f(x) = x^4 + 2x - 1$	

Decide whether each function is a polynomial function. If so, write it in standard form and state its degree, type, and leading coefficient.

a. $f(x) = -2x^3 + 5x + 8$ **b.** $g(x) = -0.8x^3 + \sqrt{2}x^4 - 12$ **c.** $h(x) = -x^2 + 7x^{-1} + 4x$ **d.** $k(x) = x^2 + 3^x$

SOLUTION

- a. The function is a polynomial function that is already written in standard form. It has degree 3 (cubic) and a leading coefficient of −2.
- **b.** The function is a polynomial function written as $g(x) = \sqrt{2}x^4 0.8x^3 12$ in standard form. It has degree 4 (quartic) and a leading coefficient of $\sqrt{2}$.
- **c.** The function is **not a polynomial** function because the term $7x^{-1}$ has an exponent that is not a whole number.
- **d.** The function is **not a polynomial function** because the term 3^x does not have a variable base and an exponent that is a whole number.

Evaluate $f(x) = 2x^4 - 8x^2 + 5x - 7$ when x = 3.

SOLUTION

$f(x) = 2x^4 - 8x^2 + 5x - 7$	Write original equation.
$f(3) = 2(3)^4 - 8(3)^2 + 5(3) - 7$	Substitute 3 for x.
= 162 - 72 + 15 - 7	Evaluate powers and multiply.
= 98	Simplify.

End behavior of a polynomial's graph

The behavior of the graph as x approaches positive infinity $(+\infty)$ or negative infinity $(-\infty)$.

Determined by:

- the function's degree
- and the sign of its leading coefficient.

End Behavior of Polynomial Functions

Degree: odd Leading coefficient: positive

Degree: odd **Leading coefficient:** negative

Degree: even **Leading coefficient:** positive

Degree: even **Leading coefficient:** negative

Describe the end behavior of the graph of $f(x) = -0.5x^4 + 2.5x^2 + x - 1$.

SOLUTION

The function has degree 4 and leading coefficient -0.5.

Because the degree is even, we know both ends go the same direction.

Because the leading coefficient is negative, we know the graph opens down.

So as
$$x \to -\infty$$
, $f(x) \to -\infty$
And as $x \to +\infty$, $f(x) \to -\infty$

Check this by graphing the function on a graphing calculator, as shown.

Homework

Pg 162, #1-22